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1.0 INTRODUCTION

This document is the final report on Contract F19628-76-C-0198. The
effort on this contract discussed herein has been directed to the following:

1. Development of advanced High Altitude Effect Simulation (HAES)

experiments to provide data necessary for the development of advanced optical
codes (Section 2.0).

2. Development of a UV-visible spectrometer (Section 3.0) and particle
analyzer instrumentation (Section 4.0).

3. Evaluation of techniques for Advanced Energy Deposition Systems
(AEDS) and laboratory testing of the most promising techniques (Section 5.0).

Additional effort on this contract is described in another document
which has a limited distributionl. This document covers the following:

1. Development of a Balloon Altitude Mosaic Measurements (BAMM) system
and its associated mobile control system2

2. Laboratory studies of IR background suppression3.

NN PREREN




FRECEDING PAGE BLANK-NOT FILMED

2.0 ADVANCED EXPERIMENTS FOR CODE DEVELOPMENT

In compliance with the requirements to provide inputs that enable better
High Altitude Experimental Simulation (HAES) efforts to be performed, a study
was conducted and programs developed and submitted to SAMSO, Aerospace, IBM
Federal System, Westlake, CA. and Aerojet Electronic Systems Company, Azusa,
CA. These efforts were limited in distribution to the aforementioned groups.

An analysis of test flight data was performed by R. Huppi (USU) and
J. Reed (Visidyne) and reported in a common document issued from the Stewart
Radiance Laboratory‘b}.

In conjunction with the development of the ROSCOE infrared code, the
following models were provided to the Defense Nuclear Agency:

a. Aerosol Model
This model provides the absorption and scattering coefficients,
as well as the augular scattering distribution, due to the aerosols
as functions of altitude and type of atmosphere.

b. Wilson Cloud Model
If the humidity is sufficiently high, following a nuclear detona-
tion near sea level, the rarefaction behind the strong shock wave
causes the water vapor to condense to form a transitory cloud
of complex shape and temporal history. This model provides the
calculation, for arbitrary yield, altitude, and meteorological
conditions, of the dimensions of the Wilson Cloud, if formed,
and determines the log normal distribution of the water droplets
at specified points within the cloud. These quantities are
used to evaluate the transmission and scattering due to the
Wilson Cloud.

c. Thermal Pulse Model
To account for the photon driven processes in the environs of
a low or intermediate altitude fireball, a description has been
provided of the ultraviolet output of the fireball as a function
of yield, altitude of detonation, and time after detonation. The
scaling thus derived is compared to available field data.




Strong Shock Model

For detonations in the altitude region from about 50 to 150
kilometers, the strong shock can provide a strong, moving
source of short wavelength infrared. This model permits the
shock history to be described along any arbitrary angle of
intercept of the line of sight from the detector through the
shock wave and the shock-driven chemistry, and the resulting
chemiluminescence to be estimated.

Beta Patch Structure Model

Basea on photographs taken in the field, the power spectral
density of the structure in the beta patch has been determined
and a model provided to permit its extrapolation to any exo-
atmospheric detonations. This model allows evaluations of
chosen system designs when operating against such an environ-
ment.

Plume Target Model

For comparison with the nuclear induced infrared backgrounds,
generic solid and liquid fuel plume target models have been
made for the short wavelength infrared emission as a function
of time, altitude, and rocket stage number.

10




3.0 UV-VISIBLE SPECTROMETER SYSTEM
3.1 Instrument Description

The UV and Visible Spectrometers consist of two Ebert-Fastie
scanning spectrometers. The individual specifications for each are listed
in Tables 3.1 and 3.2.

The spectrometer design is shown schematically in Figure 3.1.
An optical baffle is located in front of the spectrometer entrance slit to
minimize the contribution of off-axis sources. This optical baffle is mounted
on the spectrometer fore-optics assembly. The fore-optics assembly contains
the mounting for the instrument window (fused silica for the visible spectro-
meter and MgF2 for the UV spectrometer). The function of the window is to
provide a hermetic sealed optical path between the spectrometers and the pay-
load class 200 clean area common to all of the instrument entrance apertures.
Also incorporated in the fore-optics section is the alternate scan attenuator
disc and its driver mechanism. The function of the alternate scan attenuator
is to increase the dynamic range of each spectrometer by a factor of 100. The
disc consists of a clear substrate having a neutral density 2.0 (typ.) coating
over one-half (1800) of its transmission area. With the disc located before
the spectrometer entrance slit and rotated once for every two grating scans,
a normal spectrum is obtained foliowed by a spectrum attenuator by a factor
of 100. The mechanical drive of the alternate scan attenuator is obtained
directly from the grating drive by means of a timing belt. The predicted
radiances of the various emissions to be measured in the EXCEDE experiment
vary by orders of magnitude. However, the alternate scan attenuator disc
permits measurement of both weak and strong spectral emissions (see spectro-
meter calibration data). The measured transmission of the alternate scan
attenuator is shown in Figures 3.2 and 3.3.

Figure 3.4 is a block diagram of the instrument electronics
and Table 3.3 specifies the data format. The geometry of the experiment is
shown in Figures 3.5 and 3.6.




TYPE:

FOCAL LENGTH:

WAVELENGTH RANGE:

SPECTRAL RESOLUTION:

SLIT WIDTH:

SLIT LENGTH:

SLIT AREA:

FIELD OF VIEW:

Au:

GRATING:

SPECTRAL SCAN PERIOD:

DATA SAMPLING RATE:

MAXIMUM COUNT RATE:

TABLE 3.1

VISIBLE SPECTROMETER SPECIFICATIONS

12

Ebert-Fastie Scanning Spectrometer
1/4 Meter

38008 to 80008

12.88

0.0443 cm

3.40 cm

0.151 cn’

12° x 12°

3 o

7 x 1077 cm®-sr

1200 &/mm, Blazed at 5000R 4
Al and 3102 Coatings

3.80 Seconds

400 Samples/Second

1.64 x 104 Counts/Sample
6.55 x 106 Counts/Second
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TABLE 3.2

UV SPECTROMETER SPECIFICATIONS

TYPE:

FOCAL LENGTH:

WAVELENGTH:

SPECTRAL RESOLUTION:

SLIT WIDTH:

SLIT LENGTH:

SLIT AREA:

FIELD OF VIEW:

Aq:

GRATING:

SPECTRAL SCAN PERIOD:

DATA SAMPLING RATE:

MAXIMUM COUNT RATE:
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Ebert-Fastie Scanning Spectrometer
1/4 Meter

1500R to 30008

8.68

0.0517 cm

3.40 cm

0.176 cn’

12° x 12°

8 x 1073 e -sr

2400 o/mm. Blazed at 30008
A} and MgF2 Coatings

1.90 Seconds
400 Samples/Sec

1.64 x 104 Counts/Sample
6.55 x 106 Counts/Second
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FIGURE 3.2 VISIBLE SPECTROMETER, SPECTRAL TRANSMISSION,
ALTERNATE SCAN ATTENUATOR
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TABLE 3.3

UV AND VISIBLE SPECTROMETER SPECIFICATION DATA FORMAT

DATA FORMAT: Pulse Count Pulse Code Modulation (PCM)
SCAN SYNC: 2.5 Volt Pulse, 156 usec Wide, Bit 15
WORD SYNC: ‘ 5 Volt Pulse, 156 psec Wide, Bit 16
WORD LENGTH: 14 Bits Count Data Plus 1 Bit Word
Sync Plus 1 Bit Scan Sync

WORD FORMAT: NRZ-L 1 - 2.5 Volts

0 - 0.0 Volts
MAXIMUM DATA RATE: 6.4 K Bits/Sec
SAMPLING RATE: 400 Samples/Sec
SAMPLING TIME: 2.5 msec

UV SPECTROMETER VISIBLE SPECTROMETER
SCAN TIME: 1.90 Sec 3.80 Sec
DATA TIME: 1.82 Sec 3.64 Sec
RETRACE TIME: 0.08 Sec 0.16 Sec
SPECTRAL SCAN RATE: 824 R/Sec 1100 R/Sec
OVERSAMPLING FACTOR: -4 ~4
RESOLUTION: 8 R 12.8 R
R/sAmMPLE : 2.1 2.9
18
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3.2 Instrument Calibration
3.2.1 Spectral Calibration

On 7 July 1978, the UV and Visible Spectrometers were
taken to AFGL for absolute calibration. The experimental setup is shown
schematically in Figure 3.7 and the relationship between source brightness and
photons entering the spectrometers is given in Table 3.4. The calibration
procedure is summarized in the following paragraphs.

The absolute radiation source for this calibration was
an Aerojet high temperature blackbody operated at 2440°C (typ.). Radiation
intensity was controlled by a variable aperture plate. A spatiaily extended
source of blackbody radiation was obtained by using a screen painted with
Kodak white reflectance paint and positioned 1.2 meters from the blackbody
aperture. The spectrometers viewed the radiated screen such that both the
spectrometers' field and aperture were filled. A slow scan capability was
added to each spectrometer by coupling a low rpm dc motor onto the grating
drive. This permitted operation at approximately 30 seconds/scan. The pulses
out of the spectrometer pulse amplitude discriminator were integrated and the
resulting analog signal used to drive the X axis of an X-Y recorder. The Y
axis of the recorder was driven by the wavelength monitor potentiometer on the
spectrometer grating drive.

With the spectrometer viewing the radiated screen, spectra
covering the range of 40008 to 80008 were run with various apertures and glass
filters. X-Y plots of these spectra were recorded on graph paper. Figure 3.8
js a typical example. The spectrometer PCM binary count data were correlated
with recorded analog voltage to obtain a calibration constant (counts/sec/volt).
The spectrometer wavelength span was calibrated by recording the spectra
obtained when viewing an Oriel xenon lamp. The above data in a PCM format
was recorded on analog tape using a CP-100 tape recorder. For this data, the
flight scan mode was used (3.8 sec/scan). From these tests, the absolute
spectral response of the Visible Spectrometer was defined. By the use of
short wavelength blocking filters, the absence of a scattered light problem
in the spectrometer was confirmed.

21




VARIABLE APERTURE
PLATE |

AEROJET HIGH TEMPERATURE
BLACKBODY

d
(126.4 cm)

HIGH REFLECTANCE
DIFFUSING SCREEN

SPECTROMETER

\{ FIGURE 3.7 SPECTROMETER ABSOLUTE CALIBRATION GEOMETRY
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TABLE 3.4
CALIBRATION SOURCE STRENGTH

N (Photons/Sec) = " he S —

= Photons/sec incident on the entrance aperture of the
instrument being calibrated

= Blackbody radiance (watts/cmz-um) at wavelength »
= Spectral resolution (um) of the spectrometer

= Photons/joule at wavelength )

= Blackbody aperture area (cm2)

= Distance from blackbody aperture to screen (cm)

= Spectrometer entrance slit area (cm2)

= Spectrometer solid angle (sr)

23
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The UV Spectrometer was set up in a similar manner and
the above tests repeated for the 20008 to 30008 spectral range. A relative
radiation source, a hydrogen lamp, was viewed to obtain the relative spectral
response between 30008 and 2000R. The absolute response of 30008 was obtained
from blackbody data. Figures 3.9 and 3.10 are typical examples. From these
tests, the absolute spectral response of the UV Spectrometer was obtained.

3.2.2 Spectrometer Field of View Calibration

The UV and Visible Spectrometers were subjected to full
field mapping as part of the instrument calibration.

The spectrometer to be calibrated was mounted on a two
axis gimbal mount. One axis (elevation) of the gimbal was coupled to a potentio-
meter. Both axes were manually adjustable.

A tungsten halogen lamp was used as a point source radiator.

The spectrometer was scanned in elevation with respect to
the point source. The elevation potentioneter generated an angle voltage which
was fed to the Y input of and X-Y plotter. The X axis was inputted with a
voltage proportional to the integrated pulse count rate out of the spectro-
meter.

Elevation scans were run, typically, for every 0.5 degrees
of azimuth. This mesh was decreased at the field edges so as to more highly
resolve the instrument field cut-off function. Figure 3.11 is a typical example.

3.2.3 Calibration Results

Using the data generated in the calibration discussed
above, we have calculated the spectrometer efficiency (¢) as a function of
wavelength.

n (count/sec) 3 n- (count/sample)
n (photon/sec) - n- (photon/sample)

€ =

where: 400 n° = n

25




324N0S AGOENIVIE “NOILVYEITYD G73I4 1IN “HILIWOYLIIdS AN 6°€ I¥N9I4

(¥) HLONITIAYM

0081 000¢ 002¢ 00t¢ 009¢ 008¢ 000¢
T T ld“"’ur Jq
B
-
N NEU H|oH X LT°€  Y3Yv 1€ "ON F¥NLY3dy
J ooovm cJUNLYYIdW3L AQOAIVIE
-
i i A i i | i _ i ] 1 1

(VOIX) AN023S ¥3d SINNOID
26




0081

33400S dWYT NID0YGAH “NOTLYHSITY) G314 TIN4 “¥3LIW0YLITAS AN OT°€ 3JuN9I4

(%) HIINITIAWM
0002 0022 00v2 0092 0082 000€

T ] ' i ' ] ' | ' l

ANOJ3S ¥3d SINNOD 3IAILYIIY

27




FONY NOILYA3TI "SA ISNOASIY IAILYIIY “YILIWOMLIIAS AN TI°€ 3AN91I4

(0)% 379NV NOILVAITI
01+ G+ 0 G- 01-

R ﬁ -

o
-

o

ISNOdS3Y JATLVIIY

28




Table 3.5 Tists the relevant parameters for the Visible
Spectrometer calibration and Table 3.6 lists the calibration results. Tables
3.7 and 3.8 provide similar information for the UV Spectrometer.

We have also calculated the following quantities for
specific 1ine emissions:

MRMAX Predicted radiance (megarayleighs) at 90 km altitude
and 120 kw E-gun emission.

MRMIN Predicted radiance (megarayleighs) at 130 km altitude
and 30 kw E-gun emission.

MR Predicted radiance (megarayleighs) at 110 km altitude
and 120 kw E-gun emission.

MRSAT Radiance (megarayleighs) at which the spectrometer data
system overflows. Upper 1imit of valid data for a non-
attenuated spectral scan.

MRSAT2 Radiance (megarayleighs) at which spectrometer data
system overflows. Upper limit of valid data for an
attenuated spectral scan.

MR.05 Maximum radiance (megarayleighs) required for data
having a 5 percent statistical error.

MR.1 Maximum radiance (megarayleighs) required for data
having a 10 percent statistical error.

These are tabulated in Tables 3.9 and 3.10 for the
visible and UV spectrometers respectively.

3.3 UV DIODES

The function of the UV diodes was to measure the wide band UV
irradiance in the 12508 to 30008 spectral interval. Diode specifications are
given in Table 3.11.

The UV-1 diode is shown in Figure 3.12. It employs as a
detector an ITT Model F4115 biplanar photodiode having a solar blind cesium

29




TABLE 3.5

EXCEDE VISIBLE SPECTROMETER PARAMETERS

SPECTRAL RESOLUTION: 12.8 Angstroms
SLIT LENGTH: 3.40 cm
SLIT WIDTH: .0443 cm
AREA 1.51E-01 cm2
FIELD OF VIEW: 12.0 degrees x 12.0 degrees
SOLID ANGLE: 4.42E-02 sr
ETENDUE: 6.66E-03 cm2-sr
SPECTRAL SCAN TIME: 3.80 seconds
INTEGRATION TIME: 2.5 milliseconds
BLACKBODY TEMPERATURE: 2430° ¢
APERTURE AREA: 2.07E-03 cn’
SCREEN DISTANCE: 126.1 cm

30
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TABLE 3.7
EXCEDE ULTRAVIOLET SPECTROMETER PARAMETERS

SPECTRAL RESOLUTION: 8.6 Angstroms
SLIT LENGTH: 3.40 cm
SLIT WIDTH: .0517 cm
AREA: 1.76E-01 cm?
FIELD OF VIEW: 12.0 degrees x 12.0 degrees
SOLID ANGLE: 4.42E-02 sr
ETENDUE: 7.77E-03 cmb-sr
SPECTRAL SCAN TIME: 1.90 seconds
INTEGRATION TIME: 2.5 milliseconds
BLACKBODY TEMPERATURE: 2460° ¢
APERTURE AREA: 3.17E-01 cm
SCREEN DISTANCE: 126.1 cm
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TABLE 3.11
UV DIODE SPECIFICATIONS

uv-1 uv-2
SPECTRAL RANGE 12508 to 30008 20008 to 30008
DETECTOR Photodiode Photodiode
CsTe Photocathode CsTe Photocathode
Mng Window UV Glass Window
DATA MODE Current - Log Amplified
DYNAMIC RANGE 10*
AREA 0.36 cm’
SOLID ANGLE (Effective) 0.76 sr
ETENDUE 2.64 x 107! cn? - sr
Ig (Diode Current) Ao e 1012 -10
SENSITIVITY = (Q.E.) (————) = 3.70x10 a/MR
MR (Megarayleighs) 4n

TO CONVERT DATA TELEMETRY VOLTAGE TO MEGARAYLEIGHS:

wR = (10¢A B gy

WHERE :
A= -0.5 MRMAX = 2.7 x 101 MR
B = 4.50 MRMIN = 2.7 x 1075 MR
D(UV-1) = 0.0
D(UV-2) = 1.24
K=2.7 x 1073 MR/mv
IF MR < 0
THEN MR = 0
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FIGURE 3.12 UV-1 DIODE
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telluride photocathode. The photodetector is ideally suited for measuring
large photocurrents. The output photocurrent is linear from 10'12 amps to

1 amp. The diode window is of UV quality magnesium fluoride secured to the
tube envelope with a silver chloride seal. A high transmission mesh anode is
located in front of the photocathode. Mng was selected for the entrance
window because it is more rugged and radiation-resistant and has a short
wavelength cutoff below 1200R. The detector does not require electron
multiplication gain because of the anticipated high UV flux levels. Spectral
response of the photodiode is shown in Figure 3.13. The spectral response

of the biplanar photodiode was calibrated by the manufacturer, ITT.

The UV-2 photodiode is similar to the UV-1 except that the MgF
window is replaced by one of the UV transmitting g]asses. Thus, the spectral
range of UV-2 is from 20008 to 30008.

Each UV photodiode is packaged integrally with its data log

2

amplifier and power supply. The physical size is approximately 3 1/2 inches
wide by 6 inches high by 6 inches deep and the weight is about one (1) pound.
The maximum power required is 28 VDC, 100 ma.

Incorporated into the package is an EMR Model 582X-05 xenon
14708 calibration source to enable in-flight diode calibration. The source
has a sapphire window and emits more than 90% of its radiation in the 14508 -
16008 band. The front surface of the instrument has vacuum integrity, thus
permitting UV calibration when the instrument is mounted in the payload.

The calibration lamp optical system reflects the output flux
onto the detector. The mirrors are optically-polished aluminum overcoated
with magnesium fluoride optimized for maximum refiection in the 14008 region.

The instrument electronic block diagram is shown in Figure 3.14.
The output current is fed into a log amplifier capable of four (4) decades
of data compression. The voltage output signal is then sent to the diode
electronic chassis where it is scaled and formatted for transmission to
onboard telemetry.

3.4 EXCEDE II Quick Look Data Evaluation
The UV-Visible Spectrometer system consists of two Ebert-Fastie
scanning spectrometers and two wide band UV photodiodes. Instrument specifi-
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cations are given in the previous sections. The system was aboard the
EXCEDE II payload, EX851.44-1, which was launched from PFRR at 2002 on
28 October 1978.

Prelaunch and in-flight telemetry checkouts indicated that
the spectrometer system was operational. No data were obtained because of
a failure of the Space Data Corp. payload instrument door to eject.

During flight both the UV and Visible Spectrometer PCM data
were monitored on an oscilioscope. During the flight no signals significantly
greater than dark counts were observed. Data drop-outs, which have been
attributed to telemetry, were observed through the flight. A complete re-
duction of the flight PCM data is planned.

The UV diodes, UV-1 and UV-2, also operated throughout the
flight but no data were observed. The internal calibration was commanded
by the payload timer at T-31 seconds but the calibration lamp power operated
properly for only seconds. This problem would not have affected diode data
acquisition.

For this summary, only the real-time strip chart data were used.
In excess of thirty data drop-outs, ranging in duration from 100 msec to
6 seconds, were observed in the UV-1 and UV-2 diode data. These have been
attributed to the telemetry system and are not tabulated.

It was requested that a glitch survey of the flight data be
performed for diagnostic purposes. Table 3.12 gives the results of this

survey.
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T+31

T+38.

T+55.

T+61.

T+64.

T+74.

T+78.

T+88

T+259

T+264

T+273

T+378

seconds

seconds

seconds

seconds

seconds

seconds

seconds

seconds

seconds

seconds

seconds

seconds

TABLE 3.12
SURVEY OF UV DIODE FLIGHT DATA
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Diode Calibration 1 Starts

Diode Calibration Power Supply Malfunction
Diode Calibration 1 End -

Diode Calibration 2 Start -

Diode Calibration 2 End

Transient of Approximately 20 msec
duration observed on UV-1 and UV-2

Data

Large transient (28 volts) with a very
slow decay observed on UV-1. A smaller

(-1 volt) transient is on the UV-2 data

UV-1 data has returned to pre-transient
zero levels

Diode Calibration 3 Starts

Diode Calibration 3 Ends

20 msec transient on UV-1 Data

End of Data (LOS).



4.0 AURORAL ELECTRON MEASUREMENTS - ROCKET IC819.08-1
4.1 Introduction

Previous nighttime measurements have indicated that bright
auroral arcs are produced by localized enhancements in electron energy and flux
deposited in the upper atmosphere and that this localized enhancement is inbedded
in an extended weaker deposition which fills much of the auroral zone. The
primary instrument for electron flux measurements during the ICECAP Program was
a Visidyne electron electrostatic analyzer (ESA). Measurements with this instru-
ment on Rocket 18.219-1 showed the energy of the peak electron flux was in
excess of 30 Kev, the instrument cutoff. In order to extend the measurements
to higher energies it was decided to fly two instruments with overlapping
energy ranges from 2 Kev to 30 Kev (ESA 202B) and 5 Kev to 42 Kev (ESA 211).
In future flights the high energy analyzer range will be extended to 50 Kev.

4.2 Electrostatic Analyzer Design

The electrostatic analyzer consists of a pair of spherical
octants. An exponentially decreasing positive voltage is applied to the inner
plate. The outer plate is at ground potential. Electrons entering between the
plates with the proper angle and energy will pass through the plates without
striking either plate surface. Electrons passing through the analyzer plates
strike an aluminum-covered scintillator coupled to a photomultiplier. For the
low energy instrument, an accelerating voltage is applied to the aluminum
deposition to increase the signal produced by low energy electrons. In the
high energy instrument, no voltage is applied to the aluminum deposition. The
output signal of the photomultiplier is then a measure of the electron flux at
energy E, where E is the energy at the center of the energy band for the applied
voltage, V. For this instrument, the geometrical parameters are such that
£ = 10 V. The angular field of view of the instrument is 6.4 degrees by 16 degrees
and the geometric factor is 4.6 x 10'2 cmz-sr. The applied plate signal is an
exponentially decreasing voltage. The energy response of the instrument is
verified by vacuum testing with a variable electron beam (1 - 6 Kev).




In order to improve the instrument signal to noise, the exponential
sweep applied to the analyzer plate is modulated with a 1 kilohertz square wave.
The output of the photomultiplier is detected by a narrow band amplifier tuned
to the frequency used to mc4ulaie the analyzer plate voltage. At plate voltages
below 400 volts, there is some distortion of the modulating square wave on the
analyzer plate.

The scintillator used in this instrument is calcium fluoride
(europium activated). Two thin layers of aluminum are vacuum deposited on the
scintillator to reduce light sensitivity and to provide a conducting surface
on which to apply an accelerating voltage. The thickness is measured by the
interferometric step wedge technique. To prevent the analyzer plate voltage
from effecting vehicle potential, a grounded double grid is located in front of
the analyzer entrance aperture.

In reducing the Tow energy electron data, it is necessary to
take into account the energy loss in the aluminum.

The incident electron flux is calculated from the following

formula:
I-1
- n
ey T g e(Aq) AEB(E + eVy, - 1.3 E )
€ B PA B
where:
N(E) {cmzsec sr ev}_1 Incident electron flux at energy E.
I {amp} Photomultiplier current measured at plate
voltage V corresponding to electron energy
bandpass centered at E.
S {amp watts™ 1) Scintillator and photomultiplier response
(a -ray source).
£ Energy dependent correction of scintillator
response for electron deposition (Fig. 4.1).
e {coulombs} Electron charge 1.6 x 10"19 coulombs.
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2

AQ {cm sr} Instrument geometric factor multiplied by
grid transmission.

AE {electron volts} Electron energy bandpass, FWHM.

E Electron energy at center of bandpass.

B Correction for loss by backscattering from
the scintillator!®!.

VPA Post Accelerator Voltage.

In Analyzer noise current.

EC {electron volts} Critical energy - the energy of an electron

with practical range equal to thickness of
aluminum deposition (Fig. 4.2{6}).

The geometric factor and energy bandpass have been experimentally
measured in the laboratory. The scintillator and photomultiplier sensitivity,
S, is determined by measuring the combined response of the scintillator and
photomultiplier to a known source of radiation. In this case, an americium
241 source (5.5 x 106 ev alpha particles) is placed in contact with the calcium
fluoride (europium activated) scintillator and the photomultiplier output current
is measured at the normal photomultiplier operating voltage. The measured response
for alpha particles is multiplied by ¢ (Figure 4.1) to correct for the higher
scintillator response to electron deposition {7}. In calculating the energy
dependence of ¢, we have taken into account the average loss in the aluminum
foil.

4.3 Calibration Data
4.3.1 ESA 2028B

The characteristics of this instrument are summarized

as follows: Electron Energy - 2 keV to 30 keV

Energy Resolution - 12% FWHM
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Angular Field of View - 6.4° x 16°
Geometric Factor (AQ) - 9.3 x 10'2cm2-sr
Look Angle - 45% elevation from rocket axis,
0° azimuth
S (Scintillator and PMT Response)- 48.2 amp-watt
(measured with .68 ucurie Am 241 source)
Instrument Light Sensitivity - 2.8 x 1010 amp -
(ft -candle)'1
Aluminum Coating Thickness - 1140 + 50R
Sweep Period - 540 milliseconds

1

Sweep Time Constant - 94 milliseconds

Calibration data curves for this instrument are
given in Figures 4.3 to 4.10. The sweep voltage monitor output signal is
approximately 1 volt per 1 kv on the analyzer plate. Figure 4.7 gives the
plate monitor output voltage as a function of plate voltage. The monitor
voltage rise time is slower than the sweep voltage rise time. For this
reason, the monitor voltage should not be used for calibration for times
less than 50 milliseconds after the start of the sweep. The calibration
data for times less than 50 milliseconds after the start of the analyzer
voltage sweep are given in Figure 4.6. Electron energy versus sweep time
for times greater than 50 milliseconds is given in Fiqure 4.5.

The instrument was flown with the post accelerator
operated at a voltage of 2.71 kv. The post accelerator monitor voltage as
a function of post accelerator voltage is given in Figure 4.8.

The sweep calibration is given in Table 4.1
and the data points monitored to verify proper instrument performance are
listed in Table 4.2.
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EFFICIENCY (amps/watt (Am 241))

60 - ] 1 f’ !
50 I~
40 1~
30 |-
20—
10 L l 1 J 1
2 3 4

MONITOR VOLTAGE (volts)

FIGURE 4.3 ESA 202B, PMT SCINTILLATOR EFFICIENCY VS.
PMT HIGH VOLTAGE MONITOR VOLTAGE
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PHOTOMULTIPLIER CURRENT (amps)

1 ] | J 1

1 2 3 4 5 6
LOG AMPLIFIER OUTPUT (volts)

FIGURE 4.4 ESA 202B, LOG AMPLIFIER CURRENT-VOLTAGE CALIBRATION
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L

POST ACCELERATOR VOLTAGE (kv)

1 1

0 1 : 2 3 4

POST ACCELERATOR HIGH VOLTAGE MONITOR (volts)

FIGURE 4.8 ESA 202B, POST ACCELERATOR HIGH VOLTAGE VS. MONITOR VOLTAGE
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ESA 202 B SWEEP CALIBRATION

TABLE 4.1

Time Sweep Mon. H/V Electron Energy
(msec) (volts) (kv) (kev)
0 0 0 0
5 1.20 3.05 30.5
10 2.30 3.00 30.0
15 2.90 2.90 29.0
20 3.10 2.75 27.5
25 3.20 2.60 26.0
35 3.10 2.40 24.0
50 2.75 2.00 29.0
75 2.00 1.40 14.0
100 1.50 1.02 10.2
125 1.1 0.78 7.8
150 0.82 0.56 5.6
175 0.62 0.43 4.3
200 0.47 0.33 3.3
225 0.35 0.23 2.3
250 0.26 0.17 1.7
275 0.18 0.12 1.2
300 0.11 0.06 0.6

T
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4.3.2 ESA 211

The characteristics of this instrument are
summarized as follows:

Electron Energy - 5 kev to 42 kev
Energy Resolution - 117 FWHM

Angular Field of View - 6.4° x 16
Geometric Factor (Au) - 4.6 x 10 2cm -5y

0

(corrected for grid transmission)
Look Angle - 45° elevation from rocket axis,
180° azimuth
S (Scintillator and PMT Response) - 23.6 amp-watt
Instrument Light Sensitivity - 5.9 x 10712 amp -
(ft.—cand]e)'1
Aluminum Coating Thickness - 1100 + 508
Sweep Period - 530 milliseconds

1

Sweep Time Constant - 90 milliseconds

Calibration data curves for this instrument are
given in Figures 4.11 to 4.16. Electron energy versus sweep time for times
greater than 25 milliseconds is given in Figure 4.13.

The instrument was flown with the post accelerator
operated at a voltage of 20 volts. Figure 4.15 shows the post accelerator
monitor voltage as a function of post accelerator voltage.

The sweep calibration is given in Table 4.3
and the data points monitored to verify proper instrument performance are
listed in Table 4.4.

4.4 Rocket 1C819.08-1 Data and Engineering Evaluation

Rocket 1C819.08-1, a muiti-instrument payload on a
Sergeant-Hydac rocket, was launched at 8:10:50 UT on 28 February 1978 from
the Poker Flat Research Range. Included in the instrumentation were two
electrostatic analyzers (ESA) designed and fabricated by Visidyne, Inc.
These instruments are described in detail in the preceding sections. One
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EFFICIENCY (amps/watt (Am 241))
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FIGURE 4.11
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ESA 211, PMT SCINTILLATOR EFFICIENCY VS.
PMT HIGH VOLTAGE MONITOR VOLTAGE
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PHOTOMULTIPLIER CURRENT (amps)
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FIGURE 4.12 ESA 211, LOG AMPLIFIER CURRENT-VOLTAGE CALIBRATION
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POST ACCELERATOR VOLTAGE (kv)

1 L

1

L 1 ] 1 L L 1

2 3 4 5
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FIGURE 4.15 ESA 211, POST ACCELERATOR HIGH VOLTAGE VS.
MONITOR VOLTAGE
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TABLE 4.3
ESA 211 SWEEP CALIBRATION

t HV Mon H/V E
msec Volts kv kev
7.5 4.7 4.2 42
32.5 4.35 3.2 32
50 3.30 2.40 24
75 2.60 1.85 18.5
100 1.85 1.35 13.5
125 1.35 0.96 9.6
150 1.00 0.68 6.8
175 0.68 0.48 4.8
200 0.47 0.34 3.4
225 0.32 0.26 2.6
250 0.23 0.16 1.6
275 0.15 0.10 1.0
300 0.10 0.06 0.06
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instrument was essentially the same as that flown on previcus rocket flights.
The other instrument was a modified version to provide higher energy measure-
ments up to 40 kev. Previously, the peak detectable energy was 30 kev.

On an earlier rocket flight (18.219-1), a payload had
overflown an intense, rapidly moving auroral arc with a brightness of more
than 125 KR at 55778. The data from the ESA in this payload were saturated
at this point and it also appeared that the electron energy at peak intensity
was greater than 30 kev.

Rocket 1€819.08-1 overflew an even more intense auroral
arc than did Rocket 18.219-1, as can be seen in Figure 4.17. The peak 55778
brightness as measured by the ground based, meridan scanning photometers was
greater than 200 KR. Preliminary data from the ESA at this point do not
show any evidence of saturation. Examples of raw data taken during the
rocket flight are shown in Figure 4.18. When this data is reduced, it will
provide unique information about the electron energy spectra associated with
intense auroral arcs.
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TABLE 4.4

ESA 211 COMMUTATOR DATA

Function

Function Value

Monitor Voltage

Zero Voltage

+28 DC Switched 28.0 3.24
+28 DC Standby 28.0 3.31
+15 VDC +15 3.40
-15 VDC -15 2.32
PM H/V 23.6 amps/watt 4.37
(Am. 241)
PA H/V 0 0.03
Cover Position Cover ON 0.61
Cover OFF 4,23
Temperature 22.5% ¢ 1.98
Zero Voltage
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5.0 ADVANCED ENERGY DEPOSITION SYSTEM
5.1 Introduction

The EXCEDE program was undertaken to provide in situ measure-
ments of an atmosphere perturbed by a controlled energy deposition at levels
greatly in excess of natural levels. For this application, we have attempted
to evaluate the relative merits of electron guns, ion guns, pulsed and DC
operation, and the feasibility of depositing a neutral plasma to eliminate
the effects of space charge. The selection of a specific energy deposition
source will be affected to a large degree by the problem under study. For

instance, the behavior of long-lived F region ionization such as that produced

by VUV fireballs can best be simulated with an ion source while E region
phenomena can be simulated with an electron beam. Figure 5.1 illustrates the
range of protons, electron, photons, and alpha particles as a function of

particle energy{s’g}'

By combining this with atmospheric density such as
shown in Figure 5.2, one can obtain values for the linear range of particles
as a function of energy and altitude.

In general, an electron source is the simplest and for this
reason it will probably be chosen for most applications. The choice of DC
or pulsed operation again will depend on the application. Deposition of a
neutral plasma will eliminate spacecraft charge-up. However, to date space-
craft change-up has not been a problem.

Visidyne has already developed a rocketborne 3 kilovolt,

30 kilowatt electron gun system{lo}

which is the highest power system
successfully flown to date. This instrumentation was part of a payload
launched from the Poker Flat Research Range, Alaska on 13 April 1975. Its
innovative design used high current lithium batteries in series to provide
the accelerating voltage. The electron gun utilized a lanthanum hexaboride
as a nonpoisonable cathode which can be run at a relatively low temperature
(1700%K) compared to tungsten (2600°K). To maintain a clean environment and
minimize outgassing in operation, the electron gun was mounted in a stainless
steel vacuum chamber pumped by a Vaclon pump. A high voltage vacuum relay

was used to provide beam modulators.
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5.2 System Design Considerations

The principal limitations today to designing higher power
energy deposition systems appear to be space charge near the cathode which
lTimits beam current and the development of a high current DC modulation
technique. The theoretical space charge 1imit on diode current (id) is
given by:

2.3 x 1070 32 app

i =
d d2 Cm2

The space charge limited current will increase as V3/2

, but the range of
electrons with kilovolt energies is proportional to E2; therefore, the effect
of increasing beam current by increasing beam voltage is to decrease the
specific energy depositions.

It is substantially more difficult to design a system to
interrupt a DC current than an AC current. In designing a system to interrupt
an AC current, one can take advantage of the fact that the current is zero
every half cycle. By definition, this condition does not exist for a DC
current. In the rocket electron gun system built by Visidyne, a high voltage
vacuum relay was used to modulate the beam. This device makes use of the high
dielectric strength of high vacuum (10_8 torr) and uses high temperature
materials (tungsten and molybdenum) for contacts. When a high voltage, high
current circuit is switched, an arc will form. In a vacuum relay, this arc
will blow out which will further pump the vacuum relay.

Contact bounce is minimized (-% msec) to reduce the amount
of arcing and the rise time (~10_7 sec) of the modulated electron beam will
be Timited only by the lumped circuit parameters. However, a high frequency
modulation of the leading edge can occur due to contact bounce.

Lithium batteries have a relatively high internal impedance
which Timits the short circuit current. In the system under discussion, the
short circuit current was 12 amperes. While substantially less than the
current that would be generated with other battery systems (An equivalent
Ni-Cd battery system would have had a short circuit current in excess of
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80 amperes.), this current is still substantial and was beyond the rated
load of the high vacuum switch.

Emphasis in our effort was devoted to the development of a
technique to reduce space charge effects and to provide a new modulation
technique for higher power systems. Possible switching techniques considered
included the following:

Fused Switch

One method of protecting the battery supply during E-gun
operation would be to use a fused switch. This would consist of a number
(~12) of standard high voltage aircraft fuses connected to the contacts of
a 12-position motor driven high voltage switch. E-gun beam modulation would
be done using a standard high voltage relay. Should a fault occur, the high
voltage fuse would immediately blow open, interrupting the E-gun circuit.

A sensing circuit would detect a high voltage drop across the open fuse and
after a preset time delay, open the modulator switch, then activate the fuse
switch drive motor to switch to a new fuse into the circuit. The advantage

of this method is that it is done with standard tested components and requires
no additional development. The main disadvantage is that only a limited number
of circuit faults can be interrupted during a flight.

Switch Gear Contactor

A method which would permit a greater number of fault
interrupting would be to use a commercial power line switch-gear contactor.
A vacuum bottle type (similar to, but larger than, a high voltage vacuum relay)
could be used to modulate and fault interrupt the E-gun circuit. The major
problem would be that there are no standard systems available which can be
used in this particular application. To obtain a flight qualified, reliable,
compact modulator/fault interrupter would require additional engineering and
testing.

Additional Techniques

Another possible alternative beam modulation switch is a
developmental device, a crossed field switch. This is a gas discharge controlled
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switch capable of interrupting large currents. Still other possible switching
techniques are to use stacked silicone controlled rectifiers (SCR) in a

forced commutation mode of operation and forced commutation of a vacuum switch.
5.3 Virtual Triode Modulation

The essence of this technique is to modulate the anode of the
electron gun in the same manner as one would modulate the grid of a conventional
triode. Using this technigue, one can reduce the interruption current by
approximately a factor of twenty, which is the measured ratio of beam to
anode current. In addition, by running the gun anode positive with respect
to both the qun cathode and the skin the diode space-charge limit can be
exceeded. For these reasons, we have chosen virtual triode modulation for
the design of the Advanced Energy Deposition System (AEDS).

5.3.1 Operation Techniques

Measurements on the EXCEDE II Test accelerator
indicated the following:

a. E-gun anode interception current was typically
300 ma.

b. The E-qun beam return current path was through
the payload skin rather than the E-gun anode.

c. The E-gun beam extraction is done by the anode.

Thus, if the E-gun were maintained at high negative
voltage and the E-gun anode switched to payload skin potential (~ground),
beam emission would result, but the current through the modulator switch
would be only on the order of 300 ma. When the anode was switched to cathode
potential (high voltage), the E-gun beam would be cut off. Full cutoff could
be obtained by biasing the anode slightly negative with respect to the cathode.

The advantage of this modulation technique is that
much higher gun current can be modulated without having to develop a new
beam switching technique. The disadvantage is that E-gun mechanical mounting
becomes more complex, because now the anode must be high voltage isolated
from the payload and still be connected to a high capacity thermal sink.
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By operating the E-qgun in the virtual triode con-
figuration, it may be possible to use the anode as an extraction grid. If
the anode-cathode potential were 6 kv, the E-gun perveance limited beam
current would be approximately 14 amps. If the E-gun anode is biased as
shown in Figure 5.3, then a 14 amp beam current of 3 kev electrons could
be emitted. The E-beam emittance angle of the beam would be increased, but
for the EXCEDE application, this would not be a problem. It should be noted
that only the anode interception current (<1 amp) is required from the
extraction power supply. Thus, a current increase of a factor of three at
3 kv may be possible merely by modifying the E-gun operating anode.

After consideration of the various alternatives,
the virtual triode was selected as the most promising concept. It requires
only limited new development while offering the possibility of an order of
magnitude increase in current capacity. As mentioned above, it also has a
result in an increase in current for a given accelerartion potential. A
prototype virtual triode system has been assembled and laboratory measure-
ments obtained. These are discussed in Section 5.3.2.

5.3.2 Laboratory Results

An electron gun identical to the type used in the
EXCEDE II Test experiment was mounted in a vacuum chamber and connected as
shown in Figure 5.3. Acting as a collector in place of the payload skin was
a stainless steel plate measuring 9x5 x 0.25 inches and spaced 1.75 inches
from the anode. Because of current limitations of the equipment, the maxi-
mum anode voltage that could be applied was 1 kv.

The first technique to be examined was that of using
the anode as an extraction grid to increase the E-gun beam current. Figure 5.4
showns that with the anode and the collector at the same potential (extraction
voltage equal to zero), the perveance of the test gun was essentially the
same as those used in the EXCEDE II Test expem‘ment.]0 However, contrary to
expectations, operating the E-gun with extraction voltages greater than the
beam voltage resulted in somewhat decreased beam currents as can be seen in
Figure 5.4. The most likely explanation for this is that secondary electrons

are produced at the collector and returned to the anode. As the anode volt-

78




(amperes)

BEAM CURRENT

>
T

BEAM VOLTAGE (kv)

FIGURE 5.4 EFFECT OF EXTRACTION VOLTAGE ON THE E-GUN BEAM

Aors R nsiaints o Sl shms s n




age was increased, the anode current would increase markedly while the beam
current would decrease slightly. The conclusion is that to test this tech-
nique adequately, it would be necessary to redesign the electron gun.

The second technique to be tested with this pro-
totype system was modulation of the electron beam by using the anode as an
extraction grid and biasing it slightly negative with respect to the cathode.
The advantage of this technique is that the modulation current to be switched
would be an order of magnitude lower than that of the EXCEDE II Test. For
this experiment, the E-gun was connected as in Figure 5.5 and the modulation
voltage varied from -600 to +600 volts. The results are given in Figure 5.6.
They show that the electron beam is completely cut off when the anode voltage
is biased negatively at more than 200 volts. This modulation technique,
therefore, has successfully been demonstrated. It overcomes one of the prin-
cipal Timitations of designing higher power energy deposition systems, as
mentioned in Section 5.2. Its adoption into the design of future EXCEDE
experiments is highly recommended.
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